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We prove that a version of the minimal entropy production principle holds 
rigorously for the nearest neighbor gradient system, whose hydrodynamic 
behavior we treated in an earlier paper, and study its relation to the macro- 
scopic mass current and local equilibrium of higher order. 
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1. I N T R O D U C T I O N  

The principle of minimal entropy production was noticed already by 
Kirchhoff in 1848 in his generalization of Ohm's law and thus is even older 
than Gibbs' variational principle. In the middle of the present century 
Prigogine and co-workers used it in nonequilibrium thermodynamics to 
characterize steady states with constraints. For a historical review see 
Jaynes.(1) 

An important new application of the minimal entropy production 
principle seems to be the possibility to derive from it the macroscopic flux 
via first-order correction of local equilibrium in the transition from 
microscopic dynamics to macroscopic dynamics in the hydrodynamic limit 
(see Spohn (2) for a detailed heuristic discussion). Nevertheless, its precise 
meaning, including the assumptions under which it holds, and its 
significance for the derivation of hydrodynamic equations remain unclear. 

l Institut fiir Angewandte Mathematik, Universit~it Heidelberg, 6900 Heidelberg, Federal 
Republic of Germany. 

827 

0022-4715/90/0500-0827506.00/0 �9 1990 Plenum Publishing Corporation 



828 MOrmann 

In this situation the rigorous study of simplified molecular models and 
their macroscopic behavior may help to understand these problems. 

One step in this direction is the use of Lyapunov functionals with 
bounded decay rates as a basic tool in the derivation of the hydrodynamic 
limit of a deterministic gradient system with nearest neighbor interaction in 
our paper (3) and of a system of diffusions with nearest neighbor interaction 
by Guo eta/ .  (4) This functional is the negative entropy in the latter model 
and the energy in ours. Lang (5) characterized the equilibrium states of the 
same system without the nearest neighbor restriction by the minimality of 
the energy, whose proof directly can be transferred to our model. Further- 
more, the energy strictly decreases otherwise. Thus, it satisfies the 
characteristic properties of a Lyapunov functional. Already Kirchhoff's 
case was that of minimal energy dissipation. For our model we shall prefer 
the notion energy decay, since the energy decreases and does not dissipate 
into form of energy. 

It is the purpose of this paper to study the model of ref. 3 in more 
detail, with special attention to the minimal entropy production in its pre- 
sent version of the energy decay principle. The main result is its verification 
for strictly positive macroscopic times in the hydrodynamic limit 
(Theorem 3.3). We also study the relation between the minimal energy 
decay, the macroscopic mass current, and local equilibrium of higher order. 
On a heuristic level we trace the minimal energy decay and the macro- 
scopic mass current back to the validity of local equilibrium of higher 
order. Rigorously, we derive the macroscopic mass current from the boun- 
dedness of the energy decay (Proposition 2.5) and characterize minimal 
energy decay by a weak from of local equilibrium of higher o r d e r  
(Corollary2.6). In contrast to Spohn's procedure, (2) who heuristically 
derived the mass current from a similar characterization, we use in the 
proof of this characterization the already established mass current. 

We often rely on the results of ref. 3, but in order to make the paper 
self-contained, we first briefly describe the model with the basic results of 
ref. 3. 

The gradient system itself is the time evolution of particles in the 
Euclidean space R d, given by the system of equations 

d x  i 
dt - ~ V(xi-xj)  ( i e l c Z )  

The force F is the negative gradient of a symmetric potential q~. For d=  1, 
e.g. the index set I is either Z (the infinite case) or {1,..., N} (the finite 
case). 
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Our model, the finite one-dimensional gradient system with interaction 
only between neighbor particles, is given by the system of equations 

d x  i 
d-T= ~ F ( x , - x j ) = - F ( x i + , - x z ) + F ( x ~ - x i  1) (1 ~<i~<N) 

J :  I J - -  il = 1 

with xi<xi+1 for 1 <.i<~N- 1. 
We consider for 0 < e ~< eo the rescaled system: 

q~(t):=exi(e 2t) (I~<i~<N ~) 

which evolves according to the system of equations 

dt e (I~<i~<N) (1.1) 

and study its behavior in the hydrodynamic limit, as e tends to 0. For the 
sake of transparency we omit the explicit quotation of ~ in the notation of 
the configuration and derived quantities, if this causes no confusion. 

There is only one conserved quantity, the particle number, resp. mass, 
whose local distribution is represented by its empricial measure: 

p~ := e~ 6q,(,) (1.2) 
i 

The equilibrium states corresponding to a given constant density p are 
characterized by equidistance equal to p -~ of the particles, except for the 
case of finite radius R of the range of the potential and density p > R -~, 
where the particles only have to have a distance ~>R -1. One can 
summarize both cases by claiming equality of the force F applied to the 
distance. This conception will turn out to be more natural, as we shall see 
later. 

The main result of ref. 3 is the weak convergence of the measures (1.2) 
to measures with smooth density p, satisfying the nonlinear diffusion 
equation 

0t p,(q) = F (1.3) 

in a weak sense (see also Theorem 3.1 below). 
The proof consists of three steps(3~: compactness of the empirical 

distributions (1.2), the properties of limit measures with the derivation of 
Eq. (1.3), and the uniqueness of its solution with prescribed initial distribu- 
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tion. The most difficult part is the second step and it is just there where 
bounded energy decay is important. The results of the present paper, 
mainly Theorem 3.1, improve the procedure of this step. 

2. V A R I A T I O N A L  I N E Q U A L I T I E S  

First we state the assumptions on the potential ~b. 
Let ~: R\{0} ~ R  + be a twice continuously differentiable function 

with the following properties: 

1. Symmetry: ~ ( q ) = ~ ( - q )  for qr 

2. Convexity: there exists 0 < R ~< oo such that q~ is strictly convex on 
(0, R] and identically 0 on [R, oo), if R < o% resp. decreases to 0, 
as q ~ o o ,  if R =  oo. 

3. Singularity at 0: (a) ~b(q)--, oe as Iql--,0; (b) there exists a > 0  
such that Iq" q~'(q)l ~<~q~(q) for Iql sufficiently small. This condi- 
tion prevents singularities of infinite order at 0. Remark that we do 
not need it in the stronger version of ref. 3. 

In this section we shall prove asymptotic variational inequalities for the 
energy and its decay rate as the particle configuration given by (1.2) weakly 
converges to a given limit measure. 

The energy of the configuration p~ = ~ Z i  g)qi(,I is given by 

H(D~) := 2 i,j: li-Jl = 1  i 

with d~ :=(q~+~-qi)/e denoting the distances of the particles on the 
microscopic scale. 

The decay rate of the energy 

d 
H(pT) = -D(pT) (2.2) 

is easily calculated (see ref. 3): 

D ( p ~ ) = ~ v i ( t )  2 with v i=e- l { -V(d i )+F(d i_ l ) }  
i 

[-see (1.1)]. Remark that the velocities vi are functions of the configuration 
and not independent variables as in the classical dynamics. 

The inequalities which we are going to prove are valid for fixed times 
and do not  depend on the dynamics except for the dynamical meaning of 
the estimated quantities. So we assume that for 0 < e ~< eo we are given 
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configurations p ' =  e Ze (~q(~qi' which weakly converge to a measure p as 
e ~ O .  

For  a heuristic derivation of an asymptotic lower bound of the energy 
we assume that local equilibrium holds, i.e., df is asymptotically locally 
constant. Then it is easy to see that the limit measure p has a density, 
which we again denote by p, and that at least formally H(p ~) tends to 

q~(1/p(q)) p(q)dq. The integrand is taken to be 0 for p(q) = 0 ,  as will be 
done with similar functions in the sequel without further mentioning. We 
shall show now that this is indeed an asymptotic lower bound of the 
energy. 

Theorem 2.1. Let P~ = ~ ~ i  (~qi --)" P weakly as e ~ 0 with 
l i m ~ o  H(p ~) < oo. Then p has a density and 

lim H(y') >~ f q~ ( 1 ) ~ o  ~ p(q) dq 

holds. If {D(p~), 0 < E ~< go} is bounded, then 

H(p ~)~ q~ ~ p(q) dq as ~ 0  

Proof. Let I be a bounded interval with p(OI)= 0 and length ]II. For  
i with qs, qi+ ~ ~ I there holds by the convexity of q5 

q~( d,) >1 q~( d) + qY (_d)( di - _d) 

with the mean value of the inner distances 

d Zi:[qi ,  q i . l ] c l d i  ~ . i : [ q , . q i + l ] c l ( q i + l - q i )  I11 
: =  _ ~ < - -  

- ~ l p e ( ] )  _ 1 pe ( ] )  _ ,7. f i t ( [ )  _ 

By summation over i we get 

since 

With e ~ 0 there follows 

~ r ~> [p~(I)-~] r 
i: [ql,qi+ 1] ~ I 

( d i -  4) = o 
i: [q~,qi+ l ] c I 

lim ~ 
~ 0  i: [qi,q~+ l] c l 

~(d~)>~p(I)~ ( [I[ ~ 
\p(I)/ 

(2.3) 
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By approximation this holds for every interval /, and, as in the proof of 
Theorem 3.1 of ref. 3, it follows that p is absolutely continuous with respect 
to the Lebesgue measure. 

We fix again a bounded interval I and denote by H(I) the set of all 
partitions n =  {I1 ..... Ira} of I into subintervals equipped with the partial 
order induced by refinement. From (2.3) applied to the subintervals we get 

lim s Z q~(di) >>- ~ p(Ik)q5 (I/k] ~ (2.4) 
e ~ O  i : [q i , q i+ l ]=  l k : l  \p(Ik)J 

If we attach to each partition 7:= {I1 ..... Ira} the function J~ on I with 
constant value equal to Ilkl/p(Ik) on each /k, then {J~; n ~ H }  is a 
martingale on I with respect to the normalized restriction of p to L 
Furthermore, since q~ is convex, {q~(J~); n ~ H(I)} is a submartingale with 

ii l . . . . .  

k=~ \p(I~)/ Jl 

By martingale convergence it follows that in the limit as n becomes 
arbitrarily fine, J~(q) converges to p(q)-l, hence qs(j~(q)) to q~(p(q) 1) a.s. 
with respect to p and 

lira q s ( j , ) d p = s u p  (/)(J~)dp= q~ p - ~  p(q) dq 

The last statement holds, since ~1 ~(J~) alp is increasing in n with 

fl~(J~)dp<~flcP p(q) dq for all neH(I) 

by Jensen's inequality and 

sup ~(J~)dp>~ ~ -~)  p(q) dq 

(2.5) 

(see, e.g., Billingsley, ~6) Theorem 35.4). Since (2.4) is valid for all n, we 
finally get 

e ~ O  i : q i ~ l  e ~ O  i :[qi ,q~+l]C I 

which by approximation also holds for unbounded intervals. For I =  R we 
get the estimate of Theorem 2.1. But remark that we derived it also locally. 
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For the derivation of conditions under which the energy becomes 
asymptotically minimal, we proceed as above with similar, reversed 
inequalities. 

First we notice that accordingly it is sufficient to prove 

l ime ~ q~(di)~;1q~(p~-(~)p(q)d q 
,z~O i:qi~l 

for bounded intervals L 
So let I be a bounded interval. For i with qi- 1 or qi ~ I there holds 

~(d) >~ qS(di) + ~ ' (di) (d-  di) 

with the mean value of the enclosing particle distances 

~ i : [ q i  t ,qi]calr  ~ i : [ q i _ l , q i ] ~ l # ~ ( q i + l - - q i )  [1[ 
d (2.7) 

"- e-lp'(I) + 1 - p~(I) + ~ p'(I) +~ 

By summation we get 

~ ~(d,) 
i: [qi- 1,qi] c~ I S  

[p~'(I) + ~] qs(d) + ~ ~ F(di)(d- di) 
i:[qi 1 , q i ] c ~ l ~  

[p~(I) + e] ~b ( ]II ) + e ~ [ F ( d i ) -  F ( d ) ] .  ( d -  di) 
\pr i : [q i_ l ,q i ] r~ i#2  j 

The added term vanishes, but makes the significance of the sum more 
transparent, since all its terms become positive by the monotonicity of F. 

We now take the upper limit as e--,0 and apply as above the 
corresponding inequality to a partition rc ~ H(I). Because of (2.5) the first 
term of the obtained upper bound can be estimated by the required integral 
and we finally arrive at the following sufficient condition for asymptotic 
minimality of the energy. 

L e m m a  2.2. In addition to the the general assumption of 
Theorem 2.1, suppose that for every bounded interval I 

inf ~ ~ e 2 [F(d~)-  F(d~)].  ( d~ -  d~) = 0 
rc~H(1) ~ 0  k = l  i:[q i l , q i ] c ~ l ~  

with rc = {I~ ..... Im} and dk defined by (2.7) according to Ik. Then 

H(p ~)--* r p(q) dq as e ~ 0  
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The condition assumed in this lemma requires that the force applied 
to the distances of the particles are in the mean asymptotically locally 
constant, and thus is a weak form of local equilibrium. 

To finish the proof of Theorem 2.1, it remains to show that this 
condition is satisfied in the case of bounded energy decay. 

We need the following estimate, which we shall also frequently use 
later. 

L e m m a  2.3. 
holds 

For every interval I and i < j  with q~+l, q jeI  there 

IF(d~)- F(dj)l 2 <<-P~(I)'(e :~iV2k ) 

Proof. By (1.1) there follows 

IF(d j ) -F(d i )12=  s ~ vk ~ < s ( j - i )  v ~p~(I). v 
k = i + l  k = "  1 k : q k ~ I  

Now let I be a bounded interval and C > 0 with D(p ~) <<. C for 0 < e ~< Co. 
To a given t / > 0  there exists rc={I~ ..... Ira}ell(I) with p(Ik)<<.tl for 
1 <<.k<<.rn and 0<61~<eo such that p'(I~)~<2t/for 0<e, .<s l  and 1 <<.k<.rn. 

For 1 ~ k ~ m we apply Lemma 2.3 to the interval 12, which slightly 
enlarges Ik to include the nearest particle to the left and right of Ik. By 
taking a smaller value of 61, if necessary, we may assume that 12 satisfies 
the same estimate as Ik and that additionally 1121 ~<(1 +tt)ILl holds for 
0 < ~ ~ el. In the exceptional case that the distance of Ik to the nearest 
particle to the left, resp. right, does not converge to 0--which can only 
happen if the density p is essentially 0 at the boundary points--we can add, 
resp., a particle whose distance to Ik tends to 0 macroscopically, but to oo 
on the microscopic scale as s ~ 0, without changing the limit behavior. 

We thus get for i, j with [qi 1, qi] c~ I k r ~ and [qj_ 2, qj] c~ Ik # ~ ,  

]F(d~) - F(d/)l 2 ~< 2r/C 

If we fix i, we may replace dj by their mean value dk: 

]F(di)-F(dk)[2<~20C for iwi th[q~_~,q~]nlk#fg  
and thus 

6 

k = l  

[F(d, ) - F(dk) ] �9 (d k - di) 
i:[qi l , q i ] C ~ l k # ~  

~< ~ S ~ (2t/C) 1/2 tdk-dil 
k = l  i : [ q i - l , q i ] ~ l k g - ~  

~< ~ (2r/C)'/22(1 +~)l lkl  =2(2r/C)'/2(1 +t/)I11 
k = l  
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Since t / > 0  was arbitrary, the condition of Lemma 2.2 is satisfied, as 
required. 

For a heuristic derivation of an asymptotic lower bound of the energy 
decay, the assumption of local equilibrium is too weak, since it does not 
determine its value uniquely. We have to claim an even smoother behavior 
and assume that the rescaled differences (d~+l-di) /e  of the microscopic 
distances di of the particles are asymptotically locally constant. This 
implies, formally, that the limit density is sufficiently smooth and that 
(d,+l-d~)/e is approximately equal to {(c~/~q)[1/p(q)]}. [1/p(q)] for q~ 
near q. 

From this we conclude 

v i ~ -  ~ F ~(~ .p(q) for 

= f { ~ q F ( p @ q ) ) }  2' l ;( dq 

qi~q (2.8) 

p(q) dq 

It seems likely that the energy decay corresponding to these states is 
minimal, which is established in the following theorem. Later we shall 
characterize minimal energy decay by a rigorous version of local 
equilibrium of higher order. 

T h e o r e m  2.4. Let p ~ p  as e ~ 0 w i t h l i m ~ 0 D ( p ~ ) < o e .  Then p 
has a bounded density, which can be chosen such that F(1/p) is an 
absolutely continuous function with 

Jim D(p~)>~ f ~q F ~ .-fi-~ dq 

Proof. In order to show that p has a bounded density, we may 
assume without restriction that {D(p~), 0 < e ~ 8 o }  is bounded by using 
only a suitable subsequence. Then by Lemma 2.3 applied to I = R it follows 
that [F(di) - F(dj)[ is bounded independently of 0 < e ~< eo and i, j. Since 
there is evidently one i for each e such that fF(di)[ is bounded, ]F(dj)l is 
bounded independently of e and j. By the singularity of F the rescaled 
distances dj are bounded away from 0 and thus p has a bounded density. 

We fix a bounded interval of the form I =  [a, b) ( a < b )  and take 
0 < 6 < (b - a)/2. First we assume p( [a, a + 6)) ~ p([b - 6, b)). There exists 
qi~ [a, a + 6 )  with 

6 

e-lp~([a, a+6)) 
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and qj~ [ b - 6 ,  b) with 

such that 

6 

edj = qj+, - qj ~< e -'p~( [b - 6, b)) 

F(dj) - V(di) ~> F (p~([a, a + 

As e ~ 0  the right-hand side becomes positive, and it follows from 
Lemma 2.3 that 

a ~- k:qk~ l 

One derives the same estimate analogously in the case p(Ea, a+6))>~ 
p ( [ b - 6 ,  b)). As in the proof of Theorem 2.1 it follows that p(I~)/lI~[ 
p(q) as [I~l ~ 0 with q ~ I~ for all q outside a set of Lebesgue measure 0. 

For  a, b outside this set we get, as 6 ~ 0, 

lim e ~ v~ - - [ a , b ) )  - F  (2.9) 
~ 0  k:qk~I  

We understand the right-hand side as 0 if p([a,  b ) )=  0. 
In the following we set C = l i m ~ o ( e  Zk v~). 
For  disjoint intervals Ik = [a~, bk) { 1 ~< k ~< m } with ak, b~ outside the 

set of measure 0 there follows from (2.9) 

k= l p([ak, bk)) -- F <~ C (2.10) 

and 

k = l  

F 

~< p([ak,  bk 
k 1 

Thus, we can choose the value of p on the set of measure 0 such that 
F(1/p) is an absolutely continuous function with respect to p and 
consequently with respect to the Lebesgue measure, too. 
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Now we fix I =  I-a, b) and apply the estimates above to the case that 
Ik = [-a~, ak+ ~) { 1 ~< k <~ m} is a partition of I into subintervals. If we 
attach to this partition the function with constant value equal to 

p([ak, ak+l)) 

on each Ik, this is again a martingale with respect to the same partial order 
and measure as in the proof of Theorem 2.1. By (2.10) its L2(pl~)-norms are 
bounded independently of the partition. Hence, in the limit as the partition 
becomes arbitrarily fine, the martingale converges a.s. with respect to p and 
in L2(pl~) to the function 

Thus, (2.10) becomes in the limit 

. ~ dq <~ C :  lim~+ ~ e v 2 

and with It" R the desired estimate follows. 
We now determine the macroscopic flux, in our case the mass current, 

under the assumption of the boundedness of the energy decay. The mass 
current turns out to be the same as one formally gets by the approximation 
(2.8). 

P r o p o s i t i o n  2.5. Let p ~ p  as e ~ 0  with bounded {D(p~), 
0 < e ~< s0}. Then the empirical velocity distribution v ~ := s ~ Vi6q, con- 
verges weakly to the signed measure with the density -(~/~q)F(1/p(q)) .  

Proof. Let q e R  be such that p(I6)/[Ie[ ~ p ( q )  as ~ 0  with I6=  
[q - ~, q + 6]. We can assume without restriction 

dmin(I~)" p~(I6) ~ I/~l ~ dmax(I9" p~(Z9 (2.11) 

with 

dmi,(I~) = min{di: [qi, qi+ ,] ~ I~} 

and corresponding dmax(Is). This relation might fail for finite s because of 
particle distances at the boundary, but, as in the proof of Theorem 2.1, we 
can add a resp. particle near the boundary, if necessary, such that (2.11) 
strictly holds, without changing the limit behavior. 
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We apply Lemma 2.3 t o  d j = d m i n ( I 6 )  and d m a x ( I 6 )  and get by (2.11) 
and the monotonocity of F 

F (d i ) -  
\p~(Ia)] 

for i with [qi, qi+l]cla �9 

<~p~(Ia).(e ~ v 2) (2.12) 
k: qk ~ I6 

We set d'(q)= di with/such that qi < q ~< qi+~ holds, and hence 

v~ ( ( -o%q) )=s  ~ v k=-F(d~(q) )  
k:qk < q 

Taking this i in (2.12), we get 

v ~ ( ( - o % q ) ) + F (  I161 ~ 2 (s \p~(Ia)] <~ p~(Ia)" \ 
2) vk 

k:qkEla 

By letting first s and then 6 tend to 0, there follows 

v~((-oo, q))~ - F  ( ~ 1  ,~ as 8 "--+ 0 
\Ptq)/ 

Since, by Theorem 2.4, the limit is an absolutely continuous function and 
we proved the convergence for q outside a set of Lebesgue measure 0, the 
result follows. 

From (2.12) one can easily deduce the validity of local equilibrium in 
the following form: 

To r/> 0 and q there exist sl > 0 and c~ > 0 with 
IF(d~)- F(1/p(q) )[ <, rl for 0<s~<s~ and 0~< [q,- q[ <~ 8. 

Here we marked the e dependence of di for clearness. 
Proposition 2.5 and its proof are improvements of Theorem 3.3 of 

ref. 3. The main difference consists in the fact that in ref. 3 we derived the 
limit of the empirical velocity distribution under the assumption that the 
limit exists. For the additional existence proof we needed the stronger 
assumption on the potential. 

With Proposition 2.5 we are able to give the promised characterization 
of minimal energy decay. For that purpose let I be again a fixed, bounded 
interval and g =  {11,-.., Im} ell(I). We approximate the velocities of the 
particles in each subinterval by their mean: 

(Vk)= ~ f ) - - p ~ ( I k ) ' :  " e ~ i : q i ~ l k l ) i  (1 ~< k ~< m) (2.13) 
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Then 

( v k )  ~ 

i :q i~I  k ~ l  k = l  i:qiGlk 

Since by Proposition 2.5 

m ~ [ ~  ~q (p@q))dq]2 
p ( & ) ( v ~ )  --, p ~ ( L )  - F as ~ - ~ 0  ~ 2 --1 

k = l  k ~ l  

and by the martingale convergence of Theorem 2.4 

lira 
k = l  

we get the following characterization. 

Corol lary  2.6. Under the assumptions of Theorem 2.4 

D(p~)~ ~qV ~ .~dq as e ~ 0  

if and only if 

m 

lim li-m e ~ ~ (v~- (v~))2=O 
8 ~ 0  k = l  i:qiCIk 

with (vk) given by (2.3). 

This condition says that the velocities are in the mean asymptotically 
locally constant. It requires not only that the force applied to the distances 
of the particles be asymptotically locally constant as in the condition of 
Lemma 2.2, but also their rescaled differences, and thus is a weak form of 
local equilibrium of a higher order. 

Using states with this property, we see that Theorem 2.4 can be 
strengthened to a variational principle: 

p!nfoD(P~)=;{~--~F(p-~)}2"p--~dq 

with a given density p. 

822/59/3-4-20 
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3. V A R I A T I O N A L  P R I N C I P L E S  

We return to the dynamics (1.1) and apply the results of the previous 
section to its empirical mass distribution p~. As mentioned in the 
introduction, we are not concerned with the derivation of the existence of 
limit distributions. So we assume that p~ --* Pt weakly as e --* 0 for 0 ~< t ~< T 
for some T >  0, with bounded energy at time t = 0: 

H(p~o)<~E for 0<e~<e0 (3.1) 

There follows for 0 < t ~< T and 0 < e ~< e0 (see Lemma 2.1 of ref. 3) 

H(p~) < E and D(p~) <~ E/t 

By the boundedness of the energy decay for t > 0 ,  there follows from 
Theorem 2.1 the convergence of the energy to its minimal value. Before we 
derive the more difficult minimality of the energy decay, we deduce from 
Proposition 2.5 that the derived mass current really determines the macro- 
scopic dynamics. 

T h e o r e m  3.1. Let p~ptweakly  a s e - - , 0 f o r 0 < ~ t < < . T w i t h  (3.1). 
Then the limit distributions {pt, 0 ~< t ~< T} are weakly continuous in t and 
satisfy the nonlinear diffusion equation 

c~ 62 IF 1 

in the weak sense: 

for 0 < t < T and sufficiently smooth test functions (p. 

The proof is an easy consequence of Proposition 2.5 (see proof of 
Corollary 3.4 of ref. 3). 

For  the proof of the minimality of the energy decay, we have to study 
the limit behavior of the energy and its decay rate in more detail. We 
denote their minimal values as functionals of the limit density: 

_H(p) = f q~ p(q)dq 

Dlo ) : I V dq 
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Since H(p~)~  H(p,) as e--* 0 for t >  0, _H(p,) is convex and decreasing in 
t > 0. We shall show now that (2.2) holds for the minimal values, too, i.e., 
D(p,) is the decay rate of H(p,). 

L e m m a  3.2. For  0 < s < t ~ T there holds 

H ( p , )  - H(p~,) = - f~ P(Pr) dr 

As a consequence, _D(pt) is decreasing in t > 0. 

Proof. The proof uses methods of Alt and Luckhaus. (7) We consider 
the function 

g ( x ) = x * ( 1 )  for x > O  and g(O)=O 

such that _H(p)=~g(p(q))dq holds. Simple calculations show that g is 
increasing and convex and satisfies the relation 

By the convexity it follows for r > O, h > 0 that 

g(Pr +h(q)) - g(Pr(q)) >~ g'(Pr(q)) " [Pr +h(q) - -  ,Or(q)] 

g(Pr(q)) -- g(Pr+h(q)) >/g'(Pr+h(q))" [Pr(q) -- Pr +h(q)] 

and by integration 

_H(Pr+ h) -- _H(Pr) >~ (g'(Pr(q)) Pr + h(q) -- P~(q) dq 

_H(pr+h)-- _H(pr) .< ; F g'(Pr+h(q)) P~+h(q) - P~(q) dq 
h "~ h 

Theorem 2.4 and the boundedness of the derivative (8'9) for strictly positive 
times [-condition (4.4) of ref. 9 is easily verified in our case] allow the 
function g'(pr) to be chosen as a test function in Theorem 3.1. We integrate 
these inequalities with respect to time between s and t and take the limit 
h--. 0. By Theorem 3.1 one easily sees that both right-hand sides converge 
to 

' 0 

1 c~ 
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and the left-hand side by continuity 

f~' U(Pr+h)--H(Pr)dr h = -hl J,f'+h H(pr) dr _ ~ fi~ +~ ~(pr) dr~H(p~)-U(p~) 

Finally we prove the minimality of the energy decay. With the already 
established minimality of the energy we have the following result. 

Let p~ ~ Pt weakly as ~ ~ 0 for 0 ~ t ~ T with (3.1). Theorem 3.3. 
Then, as e ~ 0, 

_H(p~) ~ _H(p,) 

D(p~) --, D(p,) 

for O<t<~T 

for those 0 < t ~< T a t  which _D(pt) is left-continuous, 
which holds except for at most countably many t 

Proof. Let _D(pt) be left-continuous at a fixed t > 0  and assume that 
the energy decay does not converge to its minimal value at t. Then there 
exists q > 0 and a sequence en ~ 0 with 

D(p~") >~ _D(p,) + t 1 for n ~> 1 

Because of the left-continuity there exists 3 > 0 with 

D(p,)<<._D(ps)<~_D(p,)+tl/2 for t -~<~s<~t 

There follows 

f' e(p?)-H(p;~)--- - D(p;~ -~D(p?)~< -~(O(P,)+~) 
t - - 3  

I; _H(p,) - _H(p,_~) = - _D(p~) ds >1 -,~(_D(p,) + U2) 
6 

which leads with en ~ 0 to a contradiction. 
The fact that a monotone function has at most countably many 

discontinuities is well known. 

NOTE A D D E D  IN PROOF 

For  a more detailed summary of ref. 3 and the present paper with 
additional results as e.g. the local behavior of the energy and the motion of 
a tagged particle see M. G. Miirmann. The hydrodynamic behavior of a one- 
dimensional nearest neighbor gradient system. (Unpublished manuscript, 
Universit~it Heidelberg, 1990.) 
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